

Quantitative Measurements in Medicine

Accurate data for better Health

Tobias Schaeffter

6 June 2024

Modern Healthcare

Driving Force: More Chronic Disease - High Costs

Heart Disease

Every 33 seconds a person dies due to CVD¹

Cancer

Every 3rd person will have cancer²

Neurodegenerative

Every 8th person over 65 has Alzheimer³

Physikalisch-Technische Bundesanstalt Braunschweig und Berlin

¹AHA, ²CRUK, ³ Alzheimer Association

Modern Healthcare

Solution: Stratified Medicine

",Tailoring the right therapeutic strategy for the right person at the right time"

Aim:

- Increase response rate
- Reduce side-effects/toxity

Priority Medicines for Europe and the World - Update Report, WHO 2013

Data Challenge

Stratified Medicine – Data Challenge

Stratified Medicine:

- Classification of pathologies
- Selection of appropriate therapy through classification of patient groups

Data Challenge:

Proper patient-group selection requires "accurate measurements" for modern analysis

Metrology

- Accuracy (Bias) closeness of measurement results to a reference;
- Precision (Variability) closeness of measurements to each other

Division Medical Physics and Metrological IT

The aim of the division is the development of **new quantitative measurement techniques** and provision of **reference methods** for **precision medicine**.

The division provides mathematically sound approaches for **data analysis** and ensures **IT security** in legal metrology.

Stratified medicine is based on precise data

Stratified medicine is based on precise and accurate data

Stratified Medicine – Data Challenge

Stratified Medicine:

- Selection of appropriate therapy through classification of patient groups
- Difference due to pathology and NOT due to different
 measurement techniques

Patient-group selection requires accurate measurements

Accurate Measurements

Imaging

Quantitative MRI - Motivation

- Data consistency and comparability
- Detection of diffuse disease
- Contrast agent quantification

٠

. . .

Qualitative MRI Quantitative MRI

Healthy

Diffuse Fibrosis

Model-based reconstruction for QMRI

Iteration 1

Iteration 12

Becker K et al. MRM 2018

Results: T1 maps and cine-MRI

Motion Compensated T1 Mapping

Physics-Informed Machine Learning for Quantitative MRI

$$oldsymbol{p}^* = rgmin_{oldsymbol{p}} \|oldsymbol{A}q(oldsymbol{p}) - oldsymbol{k}\|_2^2 + \lambda_{ ilde{p}} \|oldsymbol{p} - oldsymbol{p}_{ ext{reg}}\|_2^2\,,$$

Subproblem 1:

$$egin{aligned} egin{aligned} egi$$

AI-Challenge

Trust in "algorithms" that are not fully understood ("black box"), especially for high risk applications

Certification of AI requires:

- explainability,
- robustness,
- accuracy,
- security

Accuracy Robustness, Security

EU Artificial

Intelligence Act

Article 15: Accuracy, Robustness and Cybersecurity

1. High-risk AI systems shall be designed and developed in such a way that they achieve an appropriate level of accuracy, robustness, and cybersecurity, and perform consistently in those respects throughout their lifecycle.

1a. To address the technical aspects of how to measure the appropriate levels of accuracy and robustness set out in paragraph 1 of this Article and any other relevant performance metrics, the Commission shall, in **cooperation with relevant stakeholder and organisations such as metrology and benchmarking authorities**, encourage as appropriate, **the development of benchmarks and measurement methodologies.**

2. The levels of accuracy and the relevant **accuracy metrics** of high-risk AI systems shall be declared in the accompanying instructions of use.

3. High-risk AI systems shall be as resilient as possible regarding <mark>errors, faults or inconsistencies</mark> that may occur within the system

The quality of AI strongly depends on

- Data uncertainty ("noise", "bias")
- Annotation inconsistencies ("label noise")

Standards for Data Quality

Uncertainty and Representativeness

- Precision (Variability) closeness of measurements to each other
- Accuracy (Bias) closeness of measurement results to a reference;
- **Representativeness** accurate conclusions about a population from sample

https://en.wikipedia.org/wiki/Accuracy and precision

Koçak B. DOI:10.5152/dir.2022.211297

Label Uncertainty

"Wherever there is judgment, there is noise,"

"And there is a lot more of it than you realize."

- Daniel Kahneman

Karimi D et al. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. Med Image Anal. 2020

Data Quality Dimensions – METRIC Framework

Use Cases

Vital Signs

Imaging

ECG-Reference-Dataset: PTB-XL

Application:

- Over 300 Mill. ECGs per year
- Strong application of AI for automatic analysis of ECG (arrhythmia, infarkt, hypertrophy,..)

Reference-Data

- EKG-Quality
- Defined Training-, Validation and Testdata
- Distribution within pathologies "taking representativeness into account"

Figure 1: Graphical summary of the PTB-XL dataset in terms of diagnostic superclasses

Benchmarktests and Metrics

1519

Deep Learning for ECG Analysis: Benchmarks and Insights from PTB-XL

Nils Strodthoff[®], Patrick Wagner, Tobias Schaeffter, and Wojciech Samek[®], Member, IEEE

Metrics

Method	all		diag.		sub-diag.		super-diag.		form		rhythm.	
	AUC	Fmax	AUC	Fmax	AUC	Fmax	AUC	Fmax	AUC	Fmax	AUC	Fmax
lstm bidir	.902(11)	.749(10)	.922(12)	.729(14)	.928(09)	.756(12)	.929(06)	.817(12)	.845(17)	.605(22)	.947(10)	.908(09)
İstm	.893(12)	.745(08)	.905(12)	.724(13)	.912(16)	.753(10)	.928(06)	.819(11)	.813(17)	.596(25)	.948(09)	.907(10)
fcn.wang	.911(10)	.754(08)	.922(10)	.731(14)	.920(14)	.752(11)	.927(07)	.815(12)	.875(18)	.625(23)	.928(10)	.899(11)
resnet1d.wang	.912(11)	.764(08)	.932(08)	.741(15)	.932(09)	.760(12)	.932(06)	.825(12)	.877(14)	.620(23)	.945(09)	.908(09)
xresnet1d101	.920(08)	.765(08)	.935(08)	.743(13)	.927(09)	.759(10)	.931(06)	.819(11)	.885(13)	.629(20)	.957(20)	.915(08)
Wavelet+NN	.811(14)	.678(10)	.823(19)	.627(15)	.845(17)	.654(14)	.870(10)	.731(13)	.798(21)	.526(22)	.857(52)	.866(13)
inception1d	.919(08)	.765(07)	.929(13)	.737(12)	.932(08)	.763(10)	.930(06)	.819(11)	.885(14)	.627(20)	.957(14)	.917(09)
ensemble	.923(09)	.767(08)	.935(07)	.740(12)	.928(11)	.764(11)	.937(06)	.827(12)	.891(12)	.638(23)	.970(08)	.916(08)
naive	_500(00)	.557(11)	.300(00)	.440(18)	.500(00)	.440(18)	.500(00)	.448(09)	.300(00)	.365(19)	.500(00)	.797(13)

Strodthoff et al. IEEE Journal of Biomedical and Health Informatics 2020.

Explainability

18HLT0

EU-Project: MedalCare Synthetic Reference Data

Uncertainty of ML

scientific data

Check for updates

Meda

18HLT07

OPEN MedalCare-XL: 16,900 healthy and pathological synthetic 12 lead ECGs from electrophysiological simulations

> Karli Gillette^{1,2,8}, Matthias A. F. Gsell^{0,1,8}, Claudia Nagel^{3,8}, Jule Bender^{0,3}, Benjamin Winkler⁴, Steven E. Williams^{5,6}, Markus Bär⁴, Tobias Schäffter^{0,4,5,7}, Olaf Dössel^{3,8}, Gernot Plank^{0,1,2,8} & Axel Loewe^{0,3,8}

> Mechanistic cardiac electrophysiology models allow for personalized simulations of the electrical activity in the heart and the ensuing electrocardiogram (ECG) on the body surface. As such, synthetic signals posses known ground truth labels of the underlying disease and can be employed for validation of machine learning ECG analysis tools in addition to clinical signals. Recently, synthetic ECGs were used to enrich sparse clinical data or even replace them completely during training leading to improved performance on real-world clinical test data. We thus generated a novel synthetic database comprising a total of 16,900 12 lead ECGs based on electrophysiological simulations equally distributed

AI for Image Reconstruction

Deep Learning Reconstruktion

- complex CNN
- High number of parameter
- High amount on trainings data

Physics-informed deep learning

Robustness through physics input

10s

1.5s

Kofler et al., Med Phys, 2021;

Kofler et al., ISBI, 2022

Reducing "ML-Uncertainty": "Physics-Informed Learning"

Brahma et al., Med Phys, 2023

Summary

- Modern medical diagnostics relies on multi-parametric data (in-vitro diagnostics, imaging, vital signs)
- Reliable, accurate and comparable measurements are required for selection of therapy and assessment of treatment effects
- Accurate and precise data provides the basis for the development of artificial intelligence in medicine
- Physics-informed learning increases robustness to data uncertainty

Bundesministerium für Wirtschaft und Klimaschutz