
Secure Software with Formal 
Guarantees

Using Hax



��🇷 ��🇪











Building Secure Software



[...] testing is a necessary but insufficient step in 
the development process to fully reduce 

vulnerabilities at scale [...]







Wycheproof
ECDSA P256

471 Tests

Possible 
Inputs

64 bytes 
Signature

64 bytes 
public key





TLS

Is this secure?



“[...] correctness is defined as the ability 
of a piece of software to meet a specific 

[...] requirement”



Usable Verification 
Tools



Formal Verification

Correctness



17

verification
toolchain



18

Verifying Rust Code
with hax and F*



The hax process



hax: Process



hax: Process



hax: Process

1. Make the requirements formal
2. hax attributes for “design by contract”
3. F* statically checks that the properties hold



Example Proving correctness
of Barrett reduction



Writing Crypto Code in Rust

24

Barrett Reduction: computes input % 3329
(in constant time)



25

Potential Panics in Rust Code

These arithmetic operations may overflow or underflow
causing the code to panic at run-time



Proving Panic Freedom and Correctness in F*

Expected behaviour: result ≈ input % 3329
26



Formal Verification

Security



Our Formal Verification Methodology | Security



Our Formal Verification Methodology | Security



Our Formal Verification Methodology | Security



Our Formal Verification Methodology | Security



Our Formal Verification Methodology | Security



Our Formal Verification Methodology | Security



● Rust Core: an annotated version of the Rust Core library 
● Backends: new backends for Lean, EasyCrypt, ProVerif

● Verified 
○ PQ Crypto: verified Rust code for Kyber/ML-KEM, ... 
○ OS Modules: verified kernel code for RIOT-OS
○ Protocols: verified code for EDHOC, MLS, TLS 1.3, …
○ Contracts: verified canisters for Internet Computer

hax: ongoing projects



A Usable Tool for 
Verification




franziskus@cryspen.com


